ОБОРУДОВАНИЕ ДЛЯ ИНФРАКРАСНОЙ СПЕКТРОСКОПИИ

ИНФРАСПЕК

ИНФРАКРАСНЫЕ ФУРЬЕ-СПЕКТРОМЕТРЫ

ФСМ 2201/2202 ФСМ 2203 ФСМ 2211

- Высокая чувствительность, экспрессность измерений
- Наличие линейки спектрометров с разрешением до 0,1 см⁻¹
- Автоматизация измерений и количественного анализа
- Широкий выбор дополнительного оборудования
- Простота в использовании и настройке для различных видов исследований
- Прикладные программы для решения стандартных задач

Фурье-спектрометр ФСМ 2201, приставка-автосамплер для анализа бензинов

Газовая кювета КГ01, радиометрическая приставка, микрообъектив, приставка для анализа пластин полупроводникового кремния

ИНФРАСПЕК -25 ЛЕТ ОПЫТА РАЗРАБОТКИ И ПРОИЗВОДСТВА ФУРЬЕ-СПЕКТРОМЕТРОВ

Универсальные лабораторные инфракрасные фурье-спектрометры **ФСМ 2201/2202, 2203, 2211** для проведения научных исследований и аналитических измерений в средней и ближней инфракрасной (БИК) областях спектра.

Качественный и количественный анализ образцов органических и неорганических веществ в газообразном, жидком и твердом состоянии, в том числе, пленок и порошков.

Основа фурье-спектрометров **ФСМ** – интерферометр Майкельсона с самокомпенсацией, не требующий динамической юстировки.

Спектрометры оснащены системой продувки сухим воздухом или азотом для минимизации спектральных помех от паров воды и углекислого газа и имеет влагозащитное покрытие оптических окон и светоделителя.

ФСМ 2201/2202 – базовые модели для научных, испытательных и производственных аналитических лабораторий. Спектрометры имеют высокое отношение сигнал/шум, спектральное разрешение 1.0/0.5 см⁻¹, большеразмерное кюветное отделение.

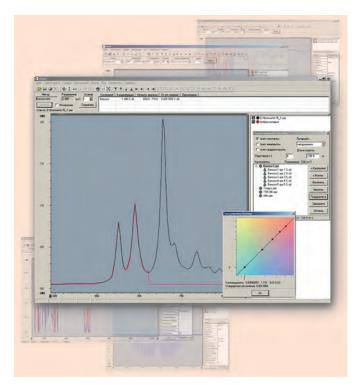
ФСМ 2203 – спектрометр исследовательского класса для средней ИК области спектра со спектральным разрешением 0.12 см⁻¹. Имеется возможность расширения рабочей области спектра.

Максимальная чувствительность достигается при использовании сменных детекторов и источников излучения для рабочих областей ИК спектра.

Спектрометр имеет 2 оптических порта. Входной используется для ввода излучения от внешнего источника, выходной – при работе с нестандартным оборудованием и детекторами. Подключение портов управляется от компьютера.

ФСМ 2211 – ИК фурье-спектрометр для работы в БИК области спектра. Используются сменные детекторы: InGaAs для спектрального диапазона $4000 - 9000 \,\text{cm}^{-1}$ и Si для диапазона $8500 - 12500 \,\text{cm}^{-1}$.

Применяется для контроля качества сырья и готовой продукции в фармацевтической, парфюмерной, пищевой и комбикормовой отраслях промышленности.


ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

Кюветы и приставки, устанавливаемые в кюветное отделение спектрометра, позволяют адаптировать прибор к решению самых разных задач – от анализа бензина до контроля оптических покрытий. Выбрав соответствующую приставку, можно проводить измерения не только в режиме пропускания, но и методами зеркального или диффузного отражения, а также получать ИК спектры многократно нарушенного полного внутреннего отражения (МНПВО).

Для исследования образцов веществ в различных агрегатных состояниях есть оборудование для отбора, транспортировки газовых и жидких проб, комплекты для подготовки проб твердых образцов.

Оптические приставки: зеркального, диффузного отражения, БИК, МНПВО

Программа количественного анализа ASpec. Градуировочная модель – бензол в бензине (метод КНК)

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ИК ФУРЬЕ-СПЕКТРОМЕТРОВ

FSpec – базовое программное обеспечение, поставляемое в комплекте со спектрометром. Позволяет осуществлять управление прибором: получение, анализ и обработку спектров, тестирование спектрометра.

Обработка спектров включает основные математические операции и преобразования, поиск спектральных линий и определение их параметров.

Работает в среде Windows XP/Vista/7/10 со спектрами в форматах *.spe, *.spc, *.dx, *.asc.

Специальные программные модули. Для работы с анализаторами или по стандартным методикам: ГОСТ, ASTM, EN, SEMI к платформе FSpec подгружаются программные модули с «кнопочным» управлением прибора, дополнительного оборудования, встроенными алгоритмами измерений и градуировками.

ASpec – количественный анализ ИК спектров, многомерный метод классических наименьших квадратов (метод КНК). Построение и верификация градуировочных моделей.

APetro – определение содержания оксигенатов и бензола в бензине по ГОСТ 32338, ГОСТ 31871. Управление приставкой-автосамплером.

AmSpec – определение содержания аминов (пиперазин, МДЭА) в водном растворе для контроля процесса очистки природного и попутного нефтяного газов от кислых компонентов.

Genuine – идентификация веществ по ИК спектрам корреляционным методом – определение подлинности фармакологических субстанций.

RubblR – анализ состава этилен-пропиленового каучука по ASTM D3900 и ASTM D6047.

OilSpec – определение параметров рабочих смазочных масел по ИК спектру поглощения в процессе эксплуатации по ASTM E 2412.

OilWatlR – определение содержания нефтепродуктов в воде по ГОСТ Р 51797 и масла в аммиаке по ГОСТ 28326.3.

SemiSpec – анализ полупроводникового кремния по стандартам SEMI MF1188, MF1391, MF951 и MF95. Автоматическое управление 2-координатным столом для пластин диаметром до 200 мм.

Библиотека ИК спектров – поиск по базе данных, включающей более 70000 спектров веществ, с использованием различных критериев поиска.

ОБЛАСТИ ПРИМЕНЕНИЯ

Научные исследования (химия, физика, биология, геология, медицина).

Промышленность (химическая, нефтехимическая, топливная, фармацевтическая, электронная, пищевая, косметическая и др.): контроль параметров технологических процессов, контроль качества сырья, готовой продукции.

Экологический мониторинг выбросов загрязняющих веществ в окружающую среду, идентификация источника загрязнения.

ОБОРУДОВАНИЕ ДЛЯ ИНФРАКРАСНОЙ СПЕКТРОСКОПИИ

М ИНФРАСПЕК

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИК ФУРЬЕ-СПЕКТРОМЕТРОВ

Модель	ФСМ 2201	ФСМ 2202	ФСМ 2203	ФСМ 2211
Спектральный диапазон, см ⁻¹	370 - 7800			3700 - 12500
Спектральное разрешение, см-1	1.0	0.5	0.12	2.0
Отношение сигнал/шум*	> 60 000			
Светоделитель	KBr с многослойным покрытием на основе Ge			CaF ₂ c Ge покрытием
Источник излучения	Высокотемпературный металлокерамический			Галогенная лампа
Детектор	Пироприемник DLATGS			Фотодиоды InGaAs, Si
Размеры кюветного отделения, мм	200x190x170			
Габаритные размеры, мм	520x37	70x250	520x490x250	520x370x250

^{*} Время измерения 1 мин. в интервале спектра 2100-2200 см⁻¹ (для ФСМ 2211: в интервале 4500-4600 см⁻¹) с разрешением 4 см⁻¹.

ООО «ИНФРАСПЕК»

196158, г. Санкт-Петербург, ул. Ленсовета, д.88, пом. 37Н

Тел./факс: (812) 382-8857, 382-9064

WWW.infraspek.ru, E-mail: info@infraspek.ru

